be-OI 2024	Fill in this box in CAPITAL LETTERS please	O
Final - CADET	FIRST NAME	
Saturday, March 23, 2024	LAST NAME SCHOOL:	Reserved

Finals of the Belgian Informatics Olympiad 2024 (time allowed : 2h maximum)

General information (read carefully before attempting the questions)

1. Verify that you have received the correct set of questions (as mentioned above in the header):

- for the students in the second year of the Belgian secundary school system or below (US grade 8, UK year 9): category cadet.
- for the students in the third or fourth year of the Belgian secundary school system or equivalent (US grade 9-10, UK year 10-11): category junior.
- for the students in the fifth year of the Belgian secundary school system or equivalent (US grade 11, UK year 12) and above: category senior.

2. Write your first name, last name and school on this page only.
3. Write your answers on the provided answer sheets. Write clearly and legibly with a blue or black pen or bic.
4. Use a pencil and eraser when working in draft form on the question sheets.
5. You may only have writing materials with you. Calculator, GSM, smartphone ... are forbidden.
6. You can always request extra scratch paper from the invigilator.
7. When you have finished, hand in this first page (with your name on it) and the pages with your answers, you can keep the other pages.
8. All the snippets of code in the exercises are written in pseudo-code. On the next pages you will find a description of the pseudo-code that we use.
9. If you have to respond with code, you can do so in pseudo-code or in any current programming language (such as Java, C, C ++, Pascal, Python, ...). We do not deduct points for syntax errors.

Good Luck!

The Belgian IT Olympiad is possible thanks to the support from our members:

Pseudo-code checklist

Data is stored in variables. We change the value of a variable using \leftarrow. In a variable, we can store whole numbers, real numbers, or arrays (see below), as well as Boolean (logical) values: true/correct (true) or false/wrong (false). It is possible to perform arithmetic operations on variables. In addition to the four conventional operators $(+,-, \times$ and $/$), you can also use the operator $\%$. If a and b are whole numbers, then a / b and $a \% b$ denote respectively the quotient and the remainder of the division.
For example, if $a=14$ and $b=3$, then $a / b=4$ and $a \% b=2$.
Here is a first code example, in which the variable age receives 17.

```
birth Year \leftarrow \leftarrow2007
age}\leftarrow2024 - birth Year
```

To run code only if a certain condition is true, we use the instruction if and possibly the instruction else to execute another code if the condition is false. The next example checks if a person is of legal age and stores the price of their movie ticket in the variable price. Look at the comments in the code.

```
if (age \geq18)
{
    price}\leftarrow8// This is a comment
}
else
{
    price \leftarrow 6 // cheaper !
}
```

Sometimes when one condition is false, we have to check another. For this we can use else if, which comes down to executing another if inside the else of the first if. In the following example, there are 3 age categories that correspond to 3 different prices for the movie ticket.

```
if (age \geq18)
{
    price \leftarrow 8 // Price for a person of legal age (adult).
}
else if (age \geq6)
{
    price \leftarrow 6 // Price for children aged 6 or older.
}
else
{
    price \leftarrow 0 // Free for children under 6.
}
```

To handle several elements with a single variable, we use an array. The individual elements of an array are identified by an index (which is written in square brackets after the name of the array). The first element of an array $t a b[]$ has index 0 and is denoted $t a b[0]$. The second element has index 1 and the last has index $n-1$ if the array contains n elements. For example, if the array $t a b[]$ contains the 3 numbers 5,9 and 12 (in this order), then $t a b[0]=5, t a b[1]=9, t a b[2]=12$. The array is size 3 , but the highest index is 2 .

To repeat code, for example to browse the elements of an array, we can use a for loop. The notation for (i $\leftarrow a$ to b step k) represents a loop which will be repeated as long as $i \leq b$, in which i begins with the value a and is increased by k at the end of each step. The following example calculates the sum of the elements of the array tab[] assuming its size is n. The sum is found in the variable sum at the end of the execution of the algorithm.

```
sum}\leftarrow
for (i\leftarrow0 to n-1 step 1)
{
    sum}\leftarrowsum+tab[i
}
```

You can also write a loop using the instruction while, which repeats code as long as its condition is true. In the next example, we're going to divide a positive integer n by 2 , then by 3 , then by $4 \ldots$ until it is a single digit number (i.e. until $n<10$).

```
d}\leftarrow
while ( }n\geq10
{
    n\leftarrown/d
    d}\leftarrowd+
}
```

Often the algorithms will be in a frame and preceded by descriptions. After Input, we define each of the arguments (variables) given as input to the algorithm. After Output, we define the state of certain variables at the end of the algorithm execution and possibly the returned value. A value can be returned with the instruction return. When this instruction is executed, the algorithm stops and the given value is returned.

Here is an example using the calculation of the sum of the elements of an array

```
Input : tab[], an array of n numbers.
    n, the number of elements in the array.
Output : sum, the sum of all the numbers in the array.
sum}\leftarrow
for (i\leftarrow0 to n-1 step 1)
{
    sum}\leftarrowsum+tab[i
}
return sum
```

Note: in this last example, the variable i is only used as a counter for the for loop. There is therefore no description for it either in Input or in Output, and its value is not returned.

Question 1 - Tests

You are requested to fill the cells of an array by computing the truth value of a test that ranges on the row and column numbers of these cells. We assume that variable i contains a row number and variable j contains a column number. If the test evaluates to true for a pair of values i and j, you must fill the cell which is in row i and column j.

Here is an example condition: ($i==2$) or ($j>3$).
This condition is true if the row number is equal to 2 or if the column number is larger than 3 .
The row numbers are displayed on the left and the column numbers are displayed on the top of the array.
The cells must thus be filled as follows.

The tests rely onthe comparison operators from the examples hereunder.

	True if i is equal to 1.
$j>3$	True if j is greater than 3.
$j>=4$	True if j is greater than or equal to 4.
$i+j<5$	True if $i+j$ is less than 5.
$i<=j+2$	True if i is less than or equal to $j+2$.
$(i==3)$ or $\quad(j==2)$	True if at least one of the two conditions is true.
$(i<2)$ and $\quad(j>3)$	True if both conditions are true.

Some questions will also make use of the notations found in the following examples:

$\max (14,18)$	Maximum function. Returns the greatest value, hence 18.
$\min (i, j)$	Minimum function. Returns the lowest value.

You can use the box hereunder as scratch, but do not forget to copy your answers back to the answer sheet.

Q1(a) /2	Fill in the cells that verify the condition ($i>=3$) and ($j<3$) $\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$			
	0	0	-	
	1	1		
	2	2	-	
	3	3	-	\square
		4	-	-
		5		\square

Question 2 - Paths

How many paths?

The pictures hereunder show rooms with square floor tiles (white cells) and obstacles (grey cells). A robot moves from \mathbf{A} in the upper left corner and must reach \mathbf{B} in the lower right corner. At each step, it can only move by one cell down or right. It can never move up nor left. The robot must remain on white cells, it can never move through a grey cell. In each case, how many different paths can the robot take to move from \mathbf{A} to \mathbf{B} ?

Q2(a) /1 \quad How many different paths can the robot take to move from A to B?

Q2(b) /1 \quad How many different paths can the robot take to move from A to B?

Q2(d)/2 \quad How many different paths can the robot take to move from A to B?

Q2(e)/3 How many different paths can the robot take to move from A to B?

A program to count the paths

There are different ways to count the paths from A to B. A DP algorithm (Dynamic Programming) can do it in all cases and becomes necessary in the most difficult cases.

The incomplete listing of a DP algorithm is given hereunder. The room is encoded as an array t [] [] with a $\mathbf{0}$ for each white cell, and a $\mathbf{1}$ for each grey cell.

Room

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	1	0	1	1	1	0	1
2	0	0	0	0	0	0	0	0	0	0	0
3	1	0	1	1	1	0	1	0	1	0	1
4	0	0	0	0	0	0	0	0	0	0	0

Correponding array t[] []

In the example above, the array t [] [] has 5 rows and 11 columns. The row numbers are displayed on the left of the array and the column numbers are displayed on the top of the array. Each cell is represented by its row number and its column number. The cell with a thick border is grey, so the corresponding element t [3] [2] is equal to $\mathbf{1}$. The cell with dotted border is white, so the corresponding element t [2] [7] is equal to $\mathbf{0}$. Cells \mathbf{A} and \mathbf{B} are of course white and thus represented by $\mathbf{0}$'s in t [] [] .

The DP algorithm computes, for each cell, how many different paths exist between \mathbf{A} and this cell. The number of paths to reach \mathbf{A} is equal to $\mathbf{1}$, since we are on this cell at the beginning and we cannot come back to this cell. The number of paths is equal to $\mathbf{0}$ for the grey cells (since we can never reach them). The number of paths to reach a white cell can be computed from the number of paths to reach its top and left neighbours (this is the central property to obtain a DP program). Watch out for the cells in the first column (they have no left neighbour) and the first row (no top neighbour)!

The numbers of paths are stored in an array dp [] [] with the same number of rows and columns as the array t [] []. At the beginning of the program, the array $d p[][]$ is filled with $\mathbf{0}$'s. The program begins with cell \mathbf{A} and progresses in the natural reading direction (row by row, from left to right in each row). With the example room, after the execution of the algorithm, $d p$ [3] [2] will be equal to $\mathbf{0}$ because no path can reach a grey cell and $d p$ [2] [7] will be equal to the number of different paths from the cell \mathbf{A} to the cell with dotted border.

The program receives: the number of rows (it is not always 5 !) in variable $n i$, the number of columns in variable $n j$, the array t [] [] filled to represent the room and the array dp [] [] filled with 0's.
The program must return the number of different paths from \mathbf{A} to \mathbf{B}.

Q2(f) /6	Fill in the \quad in the DP program. Marks between 0 et 6. You will lose 1 point for each wrong or missing answer.

You can use the box hereunder as scratch, but do not forget to copy your answers back to the answer sheet!

```
dp[0][0]}
for (i \leftarrow 0 to ni-1 step 1) {
    for (j \leftarrow 0 to step 1) {
            if (t[i][j] = 1) { dp[i][j] \leftarrow 
        else {
            if (i f 0) { dp[i][j] \leftarrow dp[i-1][j] }
            if (j \not= 0) { dp[i][j] \leftarrow dp[i][j] + ■ }
        }
    }
}
return dp[ ] [\square ]
```


Unreachable cells

Some white cells are unreachable. This means that the robot cannot reach them from \mathbf{A} because of obstacles (grey cells). We assume that the DP program has been executed and that we have: the number of rows in variable ni, the number of columns in variable $n j$, the array t [] [] filled to represent the room and the array dp [] [] filled by the DP program. You are requested to fill in the blanks in the NoPath program hereunder. It must return the number of unreachable white cells.

Q2(g) /5	Fill in the \quad in the NoPath program that counts the unreachable white cells. Marks between 0 et 5 . You will lose 1 point for each wrong or missing answer.

You can use the box hereunder as scratch, but do not forget to copy your answers back to the answer sheet.

```
NoPath \leftarrow 0
for (i \leftarrow 0 to step 1) {
    for (j \leftarrow 0 to step 1) {
        if (\square) and u) { NoPath \leftarrow ■ }
    }
}
return NoPath
```


Intermediary cells

We now want to count the number of paths going through an intermediary cell \mathbf{X}. The robot still starts from \mathbf{A} in the upper left corner and must reach \mathbf{B} in the lower right corner, but it must pass through \mathbf{X}.

Room 1: We know that there are 12 different paths between \mathbf{A} and \mathbf{X} and 7 different paths between \mathbf{X} and \mathbf{B}.
Q2(h) /1 \quad In room 1, how many paths are there from A to B, passing through X ?

In the next questions, there are two intermediary cells \mathbf{X} and \mathbf{Y}.
In all cases, we have an incomplete map of the room that contains \mathbf{X} and \mathbf{Y} and we know:
$\mathbf{N}(\mathbf{A}, \mathbf{X})$ the number of different paths between \mathbf{A} and $\mathbf{X}, \mathbf{N}(\mathbf{X}, \mathbf{B})$ the number of different paths between \mathbf{X} and \mathbf{B},
$\mathbf{N}(\mathbf{A}, \mathbf{Y})$ the number of different paths between \mathbf{A} and $\mathbf{Y}, \mathbf{N}(\mathbf{Y}, \mathbf{B})$ the number of different paths between \mathbf{Y} and \mathbf{B}.

Room 2: We know that $\mathrm{N}(\mathrm{A}, \mathrm{X})=5, \mathrm{~N}(\mathrm{X}, \mathrm{B})=12, \mathrm{~N}(\mathrm{~A}, \mathrm{Y})=8, \mathrm{~N}(\mathrm{Y}, \mathrm{B})=10$ and we have the partial map

Q2(i) /2 \quad In room 2 , how many paths are there from A to B, passing through either X or Y ?

Room 3: We know that $\mathrm{N}(\mathrm{A}, \mathrm{X})=6, \mathrm{~N}(\mathrm{X}, \mathrm{B})=16, \mathrm{~N}(\mathrm{~A}, \mathrm{Y})=10, \mathrm{~N}(\mathrm{Y}, \mathrm{B})=8$ and we have the partial map | X | Y |
| :--- | :--- | :--- |.

Q2(j) /1 \quad In room 3, how many paths are there from A to B, passing through both X and Y ?

Q2(k)/2 In room 3, how many paths are there from A to B, passing through X or Y (or both)?

Question 3 - Loops

Let us consider the program LoopA hereunder. It contains three nested for loops and one test with 3 conditions that must all be true to execute a print instruction.

```
for (i \leftarrow 1 to 100 step 1) {
    for (j \leftarrow 1 to 100 step 1) {
        for (k \leftarrow 1 to 100 step 1) {
            if (i<j and j<k and i+j+k=100) {
                print(i,j,k)
            }
        }
    }
}
```

LoopA prints all triplets of integer numbers larger than zero and whose sum is equal to 100 .
In each triplet, the three numbers are printed in increasing order.
For instance, LoopA prints triplet $(20,30,50)$ but not triplet $(50,20,30)$.

Q3(a) /1 \quad What is the first triplet to be printed?

Q3(b) /1 \quad What is the tenth triplet to be printed?

Q3(c) /1 \quad What is the last triplet to be printed?

Q3(d) /1	How many times is the test evaluated in LoopA ?

Program LoopB prints exactly the same thing as LoopA.
But it relies on a simpler test: conditions $i<j$ and $j<k$ are not useful anymore.

Q3(e) /3	Complete the \quad in LoopB so that it prints the same thing as LoopA. Marks between 0 and 3. You will lose 1 mark for each mistake or missing answer.

You can use the box hereunder as scratch, but do not forget to copy your answers back to the answer sheet.

```
for (i \leftarrow to 100 step 1) {
    for (j \leftarrow to 100 step 1) {
        for (k\leftarrow to 100 step 1) {
                if (i+j+k=100) {
                print(i,j,k)
                }
        }
    }
}
```

Q3(f) /1 Is the test in LoopB evaluated more often than, less often than or the same number of times as the test in LoopA? $\quad \square$ More often
\square Less often
\square Same number of times

| Q3(g) /1 | Is the print instruction in LoopB executed more often than, less often than or the same number
 of times as in LoopA? $\quad \square$ More often $\quad \square$ Less often $\quad \square$ Same number of times |
| :--- | :--- | :--- |

Program LoopC prints exactly the same thing as LoopA and LoopB.
The test has been modified again and we have kept only 2 for loops.

Q3(h) $/ 3$	Complete the in LoopC so that it prints the same thing asLoopA and LoopB. Marks between 0 and 3. You will lose 1 mark for each mistake or missing answer.

You can use the box hereunder as scratch, but do not forget to copy your answers back to the answer sheet.

```
for (i \leftarrow to 100 step 1) {
    for (j \leftarrow to 100 step 1) {
        k =
        if (j<k) {
            print(i,j,k)
        }
    }
}
```

Q3(i) /1 \quad Is the test in LoopC evaluated more often than, less often than or the same number of times as the test in LoopB? More often
\square Less often
\square Same number of times

Question 4 - Teleportations

Professor Spock has invented a series of teleportation networks. Such a network is made of n teleportation pods, numbered from 0 to $n-1$. Each pod allows one to teleport to exactly one other pod (since they are still prototypes, each pod allows teleportation to only one fixed destination for now). In order to ensure safety of the system, Spock wants to check that the repeated use of those teleportation devices is harmless. Can you assist him?

The first network developed by the professor has only 3 pods.

The professor tests his network by teleporting several times in a row an object which is initially in pod number 0 . The object reaches pod number 1 after one teleportation, reaches pod number 2 after two teleportations, comes back to pod number 0 after three teleportations, and so on.

$$
\text { Q4(a) /1 } \quad \text { Starting in pod } 0, \text { which pod is reached by the object after } 10 \text { teleportations? }
$$

Q4(b) /2 \quad Starting in pod 0 , which pod is reached by the object after 50 teleportations?

Q4(c)/2 Starting in pod 0 , which pod is reached by the object after 1000 teleportations?

Since everything went fine during the first test, we can now test the second network, with 7 pods.

Q4(d) /2 \quad Starting in pod 4, which pod is reached after 50 teleportations?

Q4(e) /2 \quad Starting in pod 3, which pod is reached after 1000 teleportations?

One can now see that, by repeatedly applying a large number of teleportations, one always ends up in the same pods. Thus, starting from 0 in the previous network, one visits successively pods $0,1,2,5,4,1,2,5,4,1,2,5,4, \cdots$ We say that a pod that allows one to come back to itself after a certain number of teleportations is a pod that belongs to a cycle. A cycle is a list of pods, where each pod leads to the next one and where the last one leads back to the first one. The length of a cycle is the number of pods that it contains. The second network above thus contains a cycle of lenght 4 made of pods $1,2,5,4$.

The third network hereunder contains 10 pods and 2 cycles, one of length 2 , the other of length 4 .

The professor has proven that, in all teleportation networks, where each pod allows one to teleport to exactly one other pod, we will always reach a cycle after a certain number of teleportations, no matter what the starting pod is.

Q4(f) /3 \quad In a network with n pods, starting from any pod, after how many teleportations are we certain to reach a cycle?

It is useful to compute automatically the cycle that one reaches from a given pod.
A teleportation network can be represented by an array T [] which gives, for each pod, the pod to which the teleportation occurs.
Thus, the array corresponding to the third network made of $n=10$ pods is $T=[1,2,1,8,3,1,7,8,9,4]$.
The length 2 cycle is witnessed by $\mathrm{T}[1]=2$ and $\mathrm{T}[2]=1$.
The length 4 cycle is witnessed by $\mathrm{T}[3]=8, \mathrm{~T}[8]=9, \mathrm{~T}[9]=4$ and $\mathrm{T}[4]=3$.
Pods number 0, 1, 2 et 5 allow one to reach the cycle of length 2 .
The other pods allow one to reach the cycle of length 4 (after 2 teleportations when starting from pod 6).
You have to complete Program A hereunder. It takes as input an array T [] that represents the network to study, the number n of pods and the number c of the starting pod.
It generates as output an array of Boolean values cyc [] of length n, such that cyc [i] is equal to true if pod number i belongs to the cycle that is reachable from pod c, false otherwise.
Internally, the program uses an array check [] of n Boolean values.
You can use the logical operator not (not true is equal to false and not false is equal to true).

Q4(g) /5	Fill in the \quad in program A. Marks between 0 and 5. You will lose 1 mark for each mistake or missing answer.

You can use the box hereunder as scratch, but do not forget to copy your answers back to the answer sheet.

```
Input : n, T[], c Output : cyc[]
for (i }\leftarrow0\mathrm{ to n-1 step 1) {
    check[i] \leftarrow false
    cyc[i] }\leftarrow\mathrm{ false
}
pos \leftarrow
while (\square)
    check[pos] \leftarrow true
    pos \leftarrow
}
while (\square) {
    cyc[pos] \leftarrow true
    pos }
}
return cyc[]
```

It is also important to know which pods are in the cycles of the network. Program B must fill in the Boolean array cy [] in such a way that cy [i] will be equal to true if pod number i belongs to a cycle, and to false otherwise. Internally, the program uses an array pos [] of n integer values.

Q4(h) /4	Fill in the \quad in program B. Marks between 0 and 4. You will lose 2 marks for each mistake or missing answer.

You can use the box hereunder as scratch, but do not forget to copy your answers back to the answer sheet.

```
Input : n, T[] Output : cy[]
for (i \leftarrow 0 to n-1 step 1) {
    pos[i] \leftarrow i
    cy[i] }\leftarrow\mathrm{ false
}
for(t \leftarrow 0 to n-1 step 1) {
    for (i \leftarrow 0 to n-1 step 1) {
        pos[i]}
    }
}
for (i \leftarrow 0 to n-1 step 1) {
                                true
}
return cy[]
```

The lengths of the cycles matter as well. Program C must fill in the array lency [] so that lency [i] will be equal to 0 if pod number i does not belong to a cycle and to the length of the cycle it belongs to otherwise. Program C relies on the array cy [] previously computed by Program B.

```
Q4(i)/5 Fill in the in program C.
    Marks between 0 and 5. You will lose 1 mark for each mistake or missing answer.
```

You can use the box hereunder as scratch, but do not forget to copy your answers back to the answer sheet.

```
Input : n, T[], cy[] Output : lency[]
for (i }\leftarrow0\mathrm{ to n-1 step 1) {
    if(cy[i]) {
            pos \leftarrow
            len }
            while(pos \not= i) {
                pos \leftarrow
                len }
            }
            lency[i] \leftarrow len
        }
    else { \square\square
}
return lency[]
```


Question 5 - Quidditch

Professor Dumbledore is in trouble: he needs to organise a Quidditch game (the favourite sport of the wizards) and must distribute the pupils in two groups from which he will be able to draw teams. The main issue is that many pupils do not get along together very well. For example, Ron doesn't want to speak with Draco anymore since he conjured slugs in his bed.

Professor Dumbledore has decided to record the enmities of the pupils in a graph like the one displayed below. It contains "nodes" labeled with the names of the pupils (here replaced by numbers to keep it readable) and links (called "edges") between those nodes whenever two pupils do not like each other.

First example: a graph with 5 nodes and 4 edges.

We can see on this example that 1 and 4 do not like each other and thus cannot be in the same group. However, 1 is fine with 2 and with 3.

Thus, Dumbledore wants to split the pupils in two groups in order to form two teams. These two groups do not need to be of the same size, but we cannot have two pupils that do not like each other in the same group.

On the example above, it is easy to find two groups: $\{1,2,3\}$ and $\{4,5\}$. To make it more readable, Dumbledore colors the nodes from the first group in grey and leaves the others in white.

Here are other graphs. For each of them, we want to know whether it is possible to split their nodes into two groups as explained before. When it is possible, we ask you to color the nodes. If it is impossible, cross out the graph.

You can use the drawings hereunder as scratch, but do not forget to copy your answers back to the answer sheet.

Q5(a) /2 \quad Color the nodes from one group in graph (a), or cross out the graph if it is not possible.

Q5(b) /2 \quad Color the nodes from one group in graph (b), or cross out the graph if it is not possible.

Q5(c) /2 \quad Color the nodes from one group in graph (c), or cross out the graph if it is not possible.

Q5(d) /2 Color the nodes from one group in graph (d), or cross out the graph if it is not possible.

Now, professor Dumbledore wants to find an algorithm to make this distribution in two groups. That is, he wants to color the graphs automatically.

To achieve this, he has a good look at his favourite magical book: "De Algorithmica", written by mage Cormenius (and his colleagues) in the thirteenth century. Unfortunately, some un-erasable magic ink has been spilled on the page that is relevant to Dumbledore's goal and some parts of the algorithm are missing.

Dumbledore understands that he will need a data structure called a "stack". A stack allows one to remember nodes when traversing a graph, similarly to a stack of plates, with a node at the bottom, another one on top of it and so forth until the top of the stack is reached. The following operations can be applied to the stack (see examples hereunder):

1. Push (x) adds a node x on the top of the stack;
2. $\operatorname{Pop}()$ returns the node at the top of the stack and removes it;
3. IsEmpty () returns true if the stack is empty and returns false otherwise.

Here is an example where we start with a stack of two elements, then 3 is added, then removed (the last Pop() thus returns 3).

$$
\begin{array}{|l|l|}
\hline 1 \\
\hline 2
\end{array} \xrightarrow{\text { Push(3) }} \quad \begin{array}{|l|}
\hline 3 \\
\hline 1 \\
\hline 2 \\
\hline
\end{array} \quad \xrightarrow{\text { Pop(}} \quad \begin{array}{|l|}
\hline 1 \\
\hline 2 \\
\hline
\end{array}
$$

Q5(f) /1	Let us assume that we start with the stack 1 2 and that we apply successively the operations: $\operatorname{Pop}(), \operatorname{Pop}(), \operatorname{Push}(24), \operatorname{Push}(37), \operatorname{Push}(71), \operatorname{Pop}(), \operatorname{Pop}()$. What is the resulting stack?

[^0]Professor Dumbledore can now consider a first graph traversal algorithm.
The graph to traverse contains n nodes and is described by the array of Boolean values Edge [] [].
Edge [x][y] and Edge[y][x] are both equal to true if there is an edge between nodes x and y, and equal to false otherwise.
With the graph of the first example, Edge [1] [4] and Edge [4] [1], Edge [1] [5] and Edge [5] [1], Edge [2] [4] and Edge [4] [2], Edge [3] [5] and Edge [5] [3] are equal to true. All the other values in array Edge [] [] are equal to false for this graph.

The algorithm receives the number of nodes n, the array Edge [] [] and an initial node s where the traversal starts.
It relies on an array color [] to color the nodes during the traversal.
At the beginning of the program, color [i] is initialised to -1 for all nodes i.
To color a node i, we set color [i] to 0 and this value will not change anymore.
The algorithm uses a stack which is initially empty to store nodes that have to be visited later.
Note that, contrary to our habits, the indices of the nodes start with 1 in this program.

```
Input : n, Edge[][], S
for (i}\leftarrow1\mathrm{ to n step 1){
    color[i] \leftarrow -1
}
Push (s)
color[s]}\leftarrow
while(not IsEmpty()) {
        x}\leftarrow\operatorname{Pop()
        for (y \leftarrow 1 to n step 1){
            if (Edge[x][y] and color[y] = -1){
            Push (y)
                color[y] \leftarrow 0
            }
        }
}
```

Q5(h) /3 In which order does the algorithm color the nodes of the graph of the first example (with 5 nodes and 4 edges) if the initial node is $s=4$?

Finally, professor Dumbledore tries to recover the algorithm that separates the nodes of the graph in two groups. He understands that he must use two different colors, which will be 0 and 1 , corresponding to the two groups. He also understands that if a node has color 0 , all nodes connected to it by an edge must have color 1 , and vice-versa.

To help him, professeur Dumbledore can use function invert s.t. invert $(0)=1$ and invert $(1)=0$. With these ideas in mind, can you complete the algorithm hereunder? It must return an array color [] containing the colors of all nodes if the split in two groups is possible and return false if it is impossible.

Q5(i) /6	Fill in the \quad in the algorithm. Marks between 0 and 6. You will lose 2 marks for each mistake or missing answer.

You can use the box hereunder as scratch, but do not forget to copy your answers back to the answer sheet.!

```
Input : n, Edge[][], s Output: color[] or false
for (i \leftarrow 1 to n step 1){
    color[i] \leftarrow -1
}
Push (s)
color[s]}\leftarrow
while(not IsEmpty()) {
    x}\leftarrow\operatorname{Pop()
    for (y \leftarrow 1 to n step 1){
            if (Edge[x][y]){
                if (color[y] = ) {
                                return false
            } else if (| ) {
                Push(y)
                color[y] =
            }
            }
        }
}
return color[]
```


Give your answers here!

Q2(g) Fill in the \qquad in the NoPath program that counts the unreachable white cells. Marks between 0 et 5 . You will lose 1 point for each wrong or missing answer. ```NoPath }\leftarrow for (i \leftarrow 0 to step 1) { for (j \leftarrow 0 to step 1) { if (\square}\mathrm{ and``` \qquad ```) \{ NoPath \(\leftarrow\)``` \qquad ```\[\text { \} } \] } } return NoPath```	/5
Q2(h) In room 1, how many paths are there from A to B, passing through X?	/1
Q2(i) In room 2, how many paths are there from A to B, passing through either X or Y ?	/2
Q2(j) In room 3, how many paths are there from A to B, passing through both X and Y ?	/1
Q2(k) In room 3, how many paths are there from A to B, passing through X or Y (or both) ?	/2
Q3(a) What is the first triplet to be printed?	/1
Q3(b) What is the tenth triplet to be printed?	/1
Q3(c) What is the last triplet to be printed?	/1
Q3(d) How many times is the test evaluated in LoopA?	/1
Q3(e) Complete the \qquad in LoopB so that it prints the same thing as LoopA. Marks between 0 and 3. You will lose 1 mark for each mistake or missing answer. ```for (i \leftarrow & to 100 step 1) { for (j \leftarrow to 100 step 1) { for (k \leftarrow to 100 step 1) { if (i+j+k=100) { print(i,j,k) } } } }```	/3
Q3(f) Is the test in LoopB evaluated more often than, less often than or the same number of times as the test in LoopA? \square More often Less often Same number of times	/1

Q3(g) Is the print instruction in LoopB executed more often than, less often than or the same number of times as in LoopA? More often Less often \square Same number of times	/1
Q3(h) Complete the \qquad in LoopC so that it prints the same thing asLoopA and LoopB. Marks between 0 and 3. You will lose 1 mark for each mistake or missing answer. ```for (i \leftarrow to 100 step 1) { for (j \leftarrow to 100 step 1) { k = if (j<k) { print(i,j,k) } } }```	/3
Q3(i) Is the test in LoopC evaluated more often than, less often than or the same number of times as the test in LoopB? More often Less often Same number of times	/1
Q4(a) Starting in pod 0, which pod is reached by the object after 10 teleportations?	/1
Q4(b) Starting in pod 0, which pod is reached by the object after 50 teleportations?	/2
Q4(c) Starting in pod 0, which pod is reached by the object after 1000 teleportations?	/2
Q4(d) Starting in pod 4, which pod is reached after 50 teleportations?	/2
Q4(e) Starting in pod 3, which pod is reached after 1000 teleportations?	/2
Q4(f) In a network with n pods, starting from any pod, after how many teleportations are we certain to reach a cycle?	/3


```Q4(i) Fill in the \square in program C. Input : n, T[], cy[] Output : lency[] for (i \leftarrow 0 to n-1 step 1) { if(cy[i]) { pos } len } - while(pos \not= i) { pos } len } } lency[i] \leftarrow len } else { @ } } return lency[]```	/5
Q5(a) Color the nodes from one group in graph (a), or cross out the graph if it is not possible.	/2
Q5(b) Color the nodes from one group in graph (b), or cross out the graph if it is not possible.	/2
Q5(c) Color the nodes from one group in graph (c), or cross out the graph if it is not possible.	/2
Q5(d) Color the nodes from one group in graph (d), or cross out the graph if it is not possible. $\square$   3 4   2 $\square$ 1	/2
Q5(e) A sequence of calls to Push with the correct parameters.	/1
Q5(f) A stack.	/1
Q5(g) A value	/1




[^0]:    Q5(g) /1 What is the value returned by the last $\operatorname{Pop}()$ of the sequence in the previous question?

